Qualifying Exam

Zhepei Wang Computational Audio Lab, Computer Science, UIUC

Outline

- Background
- My research
 - Overview
- Paper presentation

"Multi-View Networks for Multi-Channel Audio Classification"

"Marginal Replay vs Conditional Replay for Continual Learning"

About Zhepei

- Computational Audio Lab
 - Third semester
 - Advised by Prof. Paris Smaragdis
 - Research on applying ML/DL to audio related tasks
- Graduated from Harvey Mudd College
 - B.S., Computer Science

Music Information Retrieval (MIR) Lab: song identification

Research Overview

Audio Classification Acoustic scene classification (ASC)

- Identify the environment in which the signal is produced
- One label per sequence
- One paper accepted in WASPAA 2019

• Given a recording $\mathbf{x} \in \mathbb{R}^T$, predict $y = f_{\theta}(\mathbf{x}) \in \{0, 1, \dots, C-1\}$

Research Overview

Audio classification

- Acoustic scene classification (ASC)

 - One label per sequence

Voice activity detection (VAD)

- Identify the occurrences of the activity in interest
- One label per frame

• Given a signal $\mathbf{x} \in \mathbb{R}^T$, predict $y = f_{\theta}(\mathbf{x}) \in \{0, 1, \dots, C-1\}$

• Given a signal $\mathbf{x} \in \mathbb{R}^T$, predict $\mathbf{y} = f_{\theta}(\mathbf{x}) \in \{0, 1, \dots, C-1\}^T$

Recent Research: MVN

- # channels = # devices (recordings)
- Paper accepted to ICASSP 2019

"Multi-View Networks for Multi-Channel Audio Classification", coauthored with Jonah Casebeer

Time

MVN: Motivation

- Imagine that we're in a conference setting...
- Varying number of acoustic devices Different recording quality

Goal: detect speech recorded from multiple devices

Previous Work

Beamforming

- Linear combination of signals from each microphone in the array • Able to operate on an arbitrary number of input channels

Deep neural networks

- Outperforms beamforming for a fixed number of channels • Not adaptive to varying number of channels
 - Trained on K channels, not able to perform well on K' channels, $K \neq K'$
- What we want...
 - A learning based method
 - Handles varying number of input channels

Multi-View Network (MVN): Proposal

- A variant of RNN
- Accepts input of arbitrary number of channels
- Unrolls across both channels and time steps

y number of channels nels and time steps

MVN: Architecture and Recurrence

MVN: Pipeline

Take short-time Fourier transform (STFT) for each recording Unroll across each STFT frame and predict by frame

Experiments: Data

- TIMIT (speech) + 13 Urban Noise Classes
- Training set
 - 4-channel 2-second intermittent speech and noise
 - ~50% speech frames
 - SNR linearly spaced between -5 and 5 dB
- Test set
 - 2 30 channels

Experiments: Data

Room simulation

- 20m x 20m reverberant room
- Moving point speech source
- Diffuse noise source
- Stationary microphones
- Different room geometries between training and test

Experiments: Baseline

- Considering the following alternatives to MVN:
 - Averaging input
 - Averaging output
- Share the same RNN architecture with MVN
- Simple (weighted) averaging scheme

• Max output: taking output channel with highest probability

Experiments: Configuration

- STFT: 1024 pt window, 512 pt hop
- Objective function: cross entropy
- Optimized with Adam

Network: single layer, unidirectional GRU with 512 units

Experimental Results: Decreasing SNR

- Each new channel has a **lower** SNR than previous channels
- SNR decreases from 0 to -29 dB
- MVN less affected by channels with poor signal quality

Experimental Results: Increasing SNR

- Each new channel has a **higher** SNR than previous channels
- SNR increases from -29 to OdB

MVN more effective at collecting information from limited clean channels

Takeaways

Robust performance

- Arbitrary number of input channels
- Unseen room geometries
- SNR varies largely across channels Processing is invariant to order of input channels
- Potential extensions
 - More classes, deeper networks, different architectures • Source separation: arbitrary number of output channels?

Marginal Replay vs Conditional Replay for Continual Learning

T. Lesort et. al.

Paper Presentation

- What?
- How (and why)?
 - Generative replay vs regularization
 - Conditional replay vs marginal replay
- Contributions and comments

Continual learning, generative replay, marginal replay, conditional replay

Task

- - Given a sequence of tasks and a dataset for each task
 - Want to learn one task at a time
 - Past or future data not accessible
 - Learn from new task while retaining past knowledge
 - Assuming all tasks are classification

Continual Learning Task (CLT) (a.k.a incremental/lifelong learning)

Problem

Catastrophic Forgetting (CF) Brains/models tend to forget previous knowledge

- DNN algorithms are "greedy"

 - Performance on previous tasks may degrade

• Weights update minimizes the loss for **only the current task**

CL Approaches

Regularization

- Penalize update on weights important to previous tasks
- Pros: constant time/memory
- Cons: performance

Generative replay

- Use a generator to recover samples from previous tasks
- Pros: good and robust performance
- Cons: time and memory complexity

important to previous tasks y

amples from previous tasks mance oplexity

Generative Replay

- Use a generator to reproduce past data
- Generator can be trained in parallel to classifier
- Model-agnostic
- Marginal replay vs conditional replay • Whether or not using conditioning vector in generator

Marginal Replay

 Algorithms (for two tasks) # task 1 train C_1, G_1 from $\mathcal{D}_1 = (\mathcal{X}_1, \mathcal{Y}_1)$ # task 2 generate \mathscr{X}_1^{rep} from G_1 generate \mathscr{Y}_1^{rep} from C_1 train C_2, G_2 from $\mathscr{D}_2 \cup \mathscr{D}_1^{rep}$ store C_2, G_2 and discard C_1, G_1

Marginal Replay

 Algorithms (full) train C_1, G_1 from $\mathcal{D}_1 = (\mathcal{X}_1, \mathcal{Y}_1)$ for t = 2...Tgenerate $\mathscr{X}_{1:t-1}^{rep}$ from G_{t-1} generate $\mathcal{Y}_{1:t-1}^{rep}$ from C_{t-1} train C_t, G_t from $\mathcal{D}_t \cup \mathcal{D}_{1:t-1}^{rep}$ store C_t, G_t and discard C_{t-1}, G_{t-1}

Conditional Replay

 Algorithms (for two tasks) # task 1 train C_1, G_1 from $\mathcal{D}_1 = (\mathcal{X}_1, \mathcal{Y}_1)$ # task 2 generate \mathscr{X}_1^{rep} from G_1 conditioned on \mathscr{Y}_1^{rep} train C_2, G_2 from $\mathscr{D}_2 \cup \mathscr{D}_1^{rep}$ store G_2 and discard G_1

Conditional Replay

 Algorithms (full) train C_1, G_1 from $\mathcal{D}_1 = (\mathcal{X}_1, \mathcal{Y}_1)$ for t = 2...Ttrain C_t, G_t from $\mathcal{D}_t \cup \mathcal{D}_{1:t-1}^{rep}$ store G_t and discard G_{t-1}

generate $\mathscr{X}_{1:t-1}^{rep}$ from G_{t-1} conditioned on $\mathscr{Y}_{1:t-1}^{rep}$

Experiments: Questions

- Generative replay vs regularization
 - Test accuracy on image classification
 - Time and memory comparison is trivial
- Marginal replay vs conditional replay
 - Test accuracy
 - Time and memory cost on replay generation

Experiments: Setup

Dataset: MNIST, FashionMNIST

- Training/validation: data from current task
- Test: data from **all tasks**

Tasks

- Three different schemes (each contains a sequence of 5 or 10 tasks): • Rotations: random rotation angle $\beta \in [0, \pi/2]$

 - Permutations: a random pixel permutation scheme
 - **Disjoint classes**: each task contains samples of only one class
 - No between-class discrimination from the training data

Experiments: Setup

Algorithms

- Elastic Weight Constraint (EWC)
- Marginal replay, conditional replay

Models

- Generator: GAN, WGAN, VAE/ CGAN, CVAE

Classifier: 2 FC layers with 200 hidden units each, ReLU activated

Replay methods outperform EWC across all CLTs EWC completely fails for disjoint classes

Importance of bringing in past data

(a) accuracy for MNIST disjoint CLT

(b) accuracy for Fashion MNIST disjoint CLT

- linear to the number of tasks
 - Unbalanced class distribution

Marginal replay requires time/memory complexity

Unconditioned generator reproduces the training set distribution

- Suppose t preceding tasks (in disjoint class settings)
- The current task contains with N training samples
- Assuming G_t generates class-balanced samples...
- Case 1: generating tN samples for replay
 - expected number of samples for each previous task: N
 - $\mathcal{D}_{t+1} \cup \mathcal{D}_{1\cdot t}^{rep}$ is class-balanced
 - G_{t+1} likely to generate class-balanced samples

- Suppose t preceding tasks (in disjoint class settings)
- The current task contains with N training samples
- Assuming G_t generates class-balanced samples...
- Case 2: generating N samples for replay
 - expected number of samples for each previous task: —
 - $\mathscr{D}_{t+1} \cup \mathscr{D}_{1\cdot t}^{rep}$ is not class-balanced
 - G_{t+1} more likely to generate samples from \mathscr{D}_{t+1}

- linear to the number of tasks
 - Unbalanced class distribution

 - Conditional generator controlled by conditioning vector

Marginal replay requires time/memory complexity

Unconditioned generator reproduces the training set distribution

With memory constraint, conditional replay is superior

(a) Unbalanced MNIST Disjoint

(b) Unbalanced Fashion Disjoint

Without memory constraint, marginal replay performs better than conditional replay

(c) Balanced MNIST Disjoint

(d) Balanced Fashion Disjoint

Contributions & Takeaways

- Introduces the use of conditional generators in CLT
- Generative replay outperforms regularization methods
- Disjoint CLTs is still challenging
 - No between-class discrimination from training set
- Conditional replay is more efficient

Still some concerns...

- - (Implicit) assumption: each sample is weighted equally

For marginal replay, how to resolve unbalanced class distribution without generating a lot of samples? • Claim: tendency to reproduce the distribution it sees at training

 $\mathscr{L}_{t} = \sum \mathscr{L}_{gen}(x) + \sum \mathscr{L}_{gen}(x)$ $x \in \mathcal{D}_{1 \cdot t-1}^{replay}$ $x \in \mathcal{D}_t$ $|\mathcal{D}_{1:t-1}^{replay}| = (t-1)|\mathcal{D}_t|$ $\mathscr{L}_{t} = (t-1)$ $\sum \mathscr{L}_{gen}(x) + \sum \mathscr{L}_{gen}(x)$ $x \in \mathcal{D}_t$ $x \in \mathcal{D}_{1:t-1}^{replay}$ $\left| \mathcal{D}_{1:t-1}^{replay} \right| = \left| \mathcal{D}_t \right|$

(before: with equal weights)

(proposed: with adjusted weights)

- - Memory constraint -> unbalanced class distribution
 - Impact on the training of classifier?
 - Other metrics such as F1 for each class?
 - Again, weight adjustment?

• Low test accuracy for conditional replay with memory constraint

(b) Unbalanced Fashion Disjoint

- - No issue of unbalanced class distribution
 - Conditional generator may produce things not as desired
 - Bring back the classifier?

Poor accuracy for conditional replay without memory constraint

(d) Balanced Fashion Disjoint

(Improved?) Conditional Replay

 Algorithms train C_1, G_1 from $\mathcal{D}_1 = (\mathcal{X}_1, \mathcal{Y}_1)$ for t = 2...Tgenerate $\mathscr{X}_{1:t-1}^{rep}$ from G_{t-1} conditioned on $\mathscr{Y}_{1:t-1}^{cond}$ generate $\mathscr{Y}_{1:t-1}^{rep}$ from C_{t-1} train C_t, G_t from $\mathcal{D}_t \cup \mathcal{D}_{1 \cdot t-1}^{rep}$ store C_t, G_t and discard C_{t-1}, G_{t-1}

- Other continual learning strategies?
 - Rehearsal: select a subset of data as buffer
 - How does generative replay compare with rehearsal methods?
- More memory required to store data buffer than a generator
 - Will generative replay achieve better performance?

Further Questions

Appendix

Elastic Weight Constraint (EWC)

 $\mathscr{L}(\theta) = \mathscr{L}_B(\theta) + \sum_{i} \frac{\lambda}{2} F_i (\theta_i - \theta_{A,i}^*)^2$

- $\mathscr{L}_{R}(\theta)$ is the objective of the current task, B
- $\theta^*_{\Lambda_i}$ is the weights optimized for previous task A
- F (Fisher information matrix): $F = \frac{1}{N} \sum_{i=1}^{N} \nabla_{\theta} \log p(x_i | \theta) \nabla_{\theta} \log p(x_i | \theta)^{\mathsf{T}}$ i=1

GAN vs WGAN

- GAN has a more stable performance than WGAN
- Objectives for GAN:
- Objectives for WGAN:

 - 1-Lipschitz approximated with gradient penalty

$\min_{G} \max_{D} \mathbb{E}_{x}[\log(D(x))] + \mathbb{E}_{z}[\log(1 - D(G(z)))]$

$\min_{G} \max_{\|D\|} \lim_{Lip \leq 1} \mathbb{E}_{x}[D(x)] - \mathbb{E}_{z}[D(G(z))]$

• $\lambda(\|\nabla_{\hat{x}} D(\hat{x})\|_2^2 - 1)$ with $\hat{x} = tx + (1 - t)G(z), 0 \le t \le 1$

VAE vs CVAE

• VAE: encoder q(z | x) and decoder p(x | z)• CVAE: encoder q(z | x, c) and decoder p(x | z, c)

$\log p(x) \ge \mathbb{E}_{z|x}[p(x|z)] - D_{KL}(q(z|x)||p(z))$ $\log p(x \mid c) \ge \mathbb{E}_{z \mid x, c}[p(x \mid z, c)] - D_{KL}(q(z \mid x, c) \mid |p(z \mid c))$

